3.396 \(\int \frac{d+e x^2}{\sqrt{2+3 x^2+x^4}} \, dx\)

Optimal. Leaf size=122 \[ \frac{d \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} \text{EllipticF}\left (\tan ^{-1}(x),\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+2}}+\frac{e x \left (x^2+2\right )}{\sqrt{x^4+3 x^2+2}}-\frac{\sqrt{2} e \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{x^4+3 x^2+2}} \]

[Out]

(e*x*(2 + x^2))/Sqrt[2 + 3*x^2 + x^4] - (Sqrt[2]*e*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticE[ArcTan[x], 1/
2])/Sqrt[2 + 3*x^2 + x^4] + (d*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(Sqrt[2]*Sqrt[2
+ 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0339678, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {1189, 1099, 1135} \[ \frac{d \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4+3 x^2+2}}+\frac{e x \left (x^2+2\right )}{\sqrt{x^4+3 x^2+2}}-\frac{\sqrt{2} e \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[2 + 3*x^2 + x^4],x]

[Out]

(e*x*(2 + x^2))/Sqrt[2 + 3*x^2 + x^4] - (Sqrt[2]*e*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticE[ArcTan[x], 1/
2])/Sqrt[2 + 3*x^2 + x^4] + (d*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(Sqrt[2]*Sqrt[2
+ 3*x^2 + x^4])

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\sqrt{2+3 x^2+x^4}} \, dx &=d \int \frac{1}{\sqrt{2+3 x^2+x^4}} \, dx+e \int \frac{x^2}{\sqrt{2+3 x^2+x^4}} \, dx\\ &=\frac{e x \left (2+x^2\right )}{\sqrt{2+3 x^2+x^4}}-\frac{\sqrt{2} e \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2+3 x^2+x^4}}+\frac{d \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2} \sqrt{2+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.075026, size = 73, normalized size = 0.6 \[ -\frac{i \sqrt{x^2+1} \sqrt{x^2+2} \left ((d-e) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{x}{\sqrt{2}}\right ),2\right )+e E\left (\left .i \sinh ^{-1}\left (\frac{x}{\sqrt{2}}\right )\right |2\right )\right )}{\sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[2 + 3*x^2 + x^4],x]

[Out]

((-I)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*(e*EllipticE[I*ArcSinh[x/Sqrt[2]], 2] + (d - e)*EllipticF[I*ArcSinh[x/Sqrt[2
]], 2]))/Sqrt[2 + 3*x^2 + x^4]

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 108, normalized size = 0.9 \begin{align*}{{\frac{i}{2}}e\sqrt{2} \left ({\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) -{\it EllipticE} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}}-{{\frac{i}{2}}d\sqrt{2}{\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(x^4+3*x^2+2)^(1/2),x)

[Out]

1/2*I*e*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*(EllipticF(1/2*I*x*2^(1/2),2^(1/2))-Elliptic
E(1/2*I*x*2^(1/2),2^(1/2)))-1/2*I*d*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticF(1/2*I*
x*2^(1/2),2^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{x^{4} + 3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e x^{2} + d}{\sqrt{x^{4} + 3 \, x^{2} + 2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral((e*x^2 + d)/sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x^{2}}{\sqrt{\left (x^{2} + 1\right ) \left (x^{2} + 2\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(x**4+3*x**2+2)**(1/2),x)

[Out]

Integral((d + e*x**2)/sqrt((x**2 + 1)*(x**2 + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{x^{4} + 3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(x^4+3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(x^4 + 3*x^2 + 2), x)